Интеграли. Особине интеграла. Метода смене. Једноставни примери.
Текст задатака објашњених у видео лекцији:
Решити
Пр.1) ${\int {\left( {5 - 2x} \right)} ^9}dx$
Пр.2) $\int {\sqrt[3]{{4x + 3}}} dx$
Пр.3) $\int {\frac{{xdx}}{{\sqrt {1 - {x^2}} }}} $
Пр.1) ${\int {\left( {5 - 2x} \right)} ^9}dx=$
Смена: $5 - 2x = t/'$
${\left( {5 - 2x} \right)^\prime }dx = t'dt$
$ - 2dx = dt$
$dx = \frac{{dt}}{{ - 2}}$
$ = \int {{t^9}\frac{{dt}}{{ - 2}} = - \frac{1}{2}} \int {{t^9}dt = - \frac{1}{2}} \cdot \frac{{{t^{10}}}}{{10}} + C = - \frac{{{t^{10}}}}{{20}} + C = - \frac{{{{\left( {5 - 2x} \right)}^{10}}}}{{20}} + C$
Пр.2) $\int {\sqrt[3]{{4x + 3}}} dx=$
Смена: $4x + 3 = t/'$
${\left( {4x + 3} \right)^\prime }dx = t'dt$
$4dx = dt$
$dx = \frac{1}{4}dt$
$ = \int {\sqrt[3]{t}} \frac{1}{4}dt = \frac{1}{4}\int {\sqrt[3]{t}} dt = \frac{1}{4}\int {{t^{\frac{1}{3}}}} dt = \frac{1}{4} \cdot \frac{{{t^{\frac{4}{3}}}}}{{\frac{4}{3}}} + C = \frac{1}{4} \cdot \frac{3}{4}{t^{\frac{4}{3}}} + C = $
$= \frac{3}{{16}}\sqrt[3]{{{t^4}}} + C = \frac{3}{{16}}\sqrt[3]{{{{\left( {4x + 3} \right)}^4}}} + C$
Пр.3) $\int {\frac{{xdx}}{{\sqrt {1 - {x^2}} }}} $
Смена: $1 - {x^2} = t/'$
${\left( {1 - {x^2}} \right)^\prime } = t'dt$
$ - 2xdx = dt$
$xdx = \frac{{dt}}{{ - 2}}$
$ = \int {\frac{{\frac{{dt}}{{ - 2}}}}{{\sqrt t }}} = - \frac{1}{2}\int {\frac{{dt}}{{\sqrt t }}} = - \frac{1}{2}\int {\frac{{dt}}{{{t^{\frac{1}{2}}}}}} = - \frac{1}{2}\int {{t^{ - \frac{1}{2}}}} dt = $
$ = - \frac{1}{2}\frac{{{t^{ - \frac{1}{2} + 1}}}}{{ - \frac{1}{2} + 1}} + C = - \frac{1}{2}\frac{{{t^{\frac{1}{2}}}}}{{\frac{1}{2}}} + C = \sqrt t + C = \sqrt {1 - {x^2}} + C$